Animal Disease Factsheets
www.cfsph.iastate.edu

This factsheet is made available by:
The Center for Food
Security and Public Health
Iowa State University
College of Veterinary Medicine

The mission of the CFSPH is to increase national and international preparedness for accidental or intentional introduction of disease agents that threaten food production or public health.

Other resources at www.cfsph.iastate.edu
• Handbook for Zoonotic Diseases of Companion Animals
• Emerging and Exotic Diseases of Animals Book
• Avian Influenza Resources
• Wall Charts and Handouts
Equine Piroplasmosis

Equine Babesiosis

Last Updated: Aug. 5, 2005

Importance

Equine piroplasmosis is a tick–borne protozoal infection of horses. Piroplasmosis may be difficult to diagnose, as it can cause variable and nonspecific clinical signs. The symptoms of this disease range from acute fever, inappetence, and malaise, to anemia and jaundice, sudden death, or chronic weight loss and poor exercise tolerance. The disease may be fatal in up to 20% of previously unexposed animals. The tick vectors exist in the United States, and epidemics of piroplasmosis were seen in Florida in the 1960s.

Etiology

Equine piroplasmosis results from infection by the protozoa *Babesia caballi* or *B. equi* (phylum Apicomplexa). The two organisms may infect an animal concurrently.

Species affected

Equine piroplasmosis affects horses, mules, donkeys and zebras. Zebras are an important reservoir for infection in Africa.

Geographic distribution

Equine piroplasmosis is NOT endemic in Australia, Canada, England, Ireland, Japan and the United States. Epidemics were reported in Florida in 1961 and 1965, but after a 10–year eradication campaign, the United States appears to be free of this disease. *Babesia equi* infections have also been reported from Australia, but this parasite does not seem to have become endemic there.

Transmission

Babesia caballi and *Babesia equi* are transmitted by adult and nymphal ticks. *B. caballi* is spread by ticks in the genera *Dermacentor*, *Hyalomma*, and *Rhipicephalus*. *Dermacentor nitens*, *D. albipictus*, and *D. variabilis* can transmit this protozoan in the laboratory. Transovarial transmission occurs.

B. equi also appears to be spread by ticks in the genera *Dermacentor*, *Hyalomma*, and *Rhipicephalus*. The vectors for this disease in the Western Hemisphere have not been identified. *B. equi* does not appear to be passed transovarially.

Equine piroplasmosis can also be spread by contaminated needles and syringes. Intrauterine infection of the foal is fairly common, particularly with *B. equi*. After recovery, horses may become carriers for long periods of time.

Incubation period

The incubation period for *B. equi* infections is 12 to 19 days, and infections are more severe. For *B. caballi* infections, it is 10 to 30 days.

Clinical signs

The clinical signs of piroplasmosis are variable and often nonspecific. In rare peracute cases, animals may be found dead or dying. More often, piroplasmosis presents as an acute infection, with a fever, inappetence, malaise, labored breathing, congestion of the mucus membranes, and small, dry feces. Anemia, jaundice, hemoglobinuria, sweating, petechial hemorrhages on the conjunctiva, a swollen abdomen, and posterior weakness or swaying may be also seen. Subacute cases may have a fever (sometimes intermittent), inappetence, malaise, weight loss, signs of mild colic, and mild edema of the distal limbs. The mucus membranes can be pink, pale pink, or yellow, and may have petechiae or ecchymoses. In chronic cases, common symptoms include mild inappetence, poor exercise tolerance, weight loss, transient fevers, and an enlarged spleen (palpable on rectal examination). Foals infected in utero are usually weak at birth, and rapidly develop anemia and severe jaundice.

Post mortem lesions

In acute cases, the animal is usually emaciated, jaundiced, and anemic. The liver is typically enlarged and dark orange–brown. The spleen is enlarged, and the kidneys are pale and flabby. Petechial hemorrhages may be seen in the kidneys and subepicardial and...
subendocardial hemorrhages in the heart. There may also be edema in the lungs and signs of pneumonia.

Morbidity and Mortality

The mortality rate can be up to 20% in previously unexposed animals. In endemic regions, equine piroplasmosis can be treated with drugs; *B. equi* is usually less responsive to therapy than *B. caballi*. There is no vaccine.

Diagnosis

Clinical

Equine piroplasmosis should be suspected in horses with anemia, jaundice, and fever; however, the clinical signs are often variable and nonspecific.

Differential diagnosis

The differential diagnosis for piroplasmosis includes surra, equine infectious anemia, dourine, African horse sickness, purpura hemorrhagica, and various plant and chemical toxicities.

Laboratory tests

Equine piroplasmosis can be diagnosed by identification of the organisms in Giemsa stained blood or organ smears. *B. caballi* merozoites are joined at their posterior ends, while *B. equi* merozoites are often connected in a tetrad or “Maltese cross.” Organisms can often be found in acute infections, but may be very difficult to find in carrier animals. In carriers, thick blood films can sometimes be helpful.

Because *Babesia* organisms can be difficult to detect in carriers, serology is often the diagnostic method of choice. Serologic tests include complement fixation, indirect fluorescent antibody (IFA), and enzyme–linked immunosorbent (ELISA) assays. The IFA test can distinguish between *B. equi* and *B. caballi*.

Other methods of diagnosis include DNA probes, in vitro culture, and the inoculation of a susceptible (preferably splenectomized) animal with blood from a suspected carrier. In addition, pathogen–free vector ticks can be fed on a suspect animal, and *Babesia* identified either in the tick or after the tick has transmitted the infection to a susceptible animal.

Samples to collect

Before collecting or sending any samples from animals with a suspected foreign animal disease, the proper authorities should be contacted. Samples should only be sent under secure conditions and to authorized laboratories to prevent the spread of the disease. *Babesia equi* has been implicated in human infections; samples should be collected and handled with all appropriate precautions.

Recommended actions if equine piroplasmosis is suspected

Notification of authorities

Equine piroplasmosis should be reported immediately to state or federal authorities. Federal: Area Veterinarians in Charge (AVICS) http://www.aphis.usda.gov/vs/area_offices.htm

Quarantine and Disinfection

Disinfectants and sanitation are not generally effective against the spread of tick–borne infections. However, preventing the transfer of blood from one animal to another is vital.

Public health

B. equi has been implicated in human infections.

For More Information

World Organization for Animal Health (OIE) http://www.oie.int

OIE Manual of Standards http://www.oie.int/eng/normes/mmanual/a_summary.htm

References

“Equine Piroplasmosis.” Animal Health Australia. 1996
The National Animal Health Information System
bin/aphb/ahsq?dilist=alpha>.

“Equine Piroplasmosis.” In Manual of Standards for Di-
agnostic Tests and Vaccines. Paris: World Organiza-

“Equine Piroplasmosis and the 1996 Atlanta Olympic
Games.” December 1995 United States Department
of Agriculture Animal and Plant Health Inspection
pubs/fsepiro.html>.

Kuttler, K.L. “Babesiosis.” In Foreign Animal Diseases.
Richmond, VA: United States Animal Health Associa-